Was ist Trigonometrie einfach erklart?

Was ist Trigonometrie einfach erklärt?

Das Wort Trigonometrie setzt sich aus den beiden griechischen Wörtern trigon (Dreieck) und metrie (es wird etwas gemessen) zusammen. Die Trigonometrie liefert Methoden, um fehlende Seitenlängen und Winkelgrößen von Dreiecken zu berechnen, wenn drei dieser Größen gegeben sind.

Woher kommt der Begriff Trigonometrie?

Die Bezeichnung Trigonometrie kommt aus dem Griechischen und setzt sich aus den griechischen Wörtern für „drei“, „Winkel“ und „messen“ zusammen.

Was ist ein einheitskreis einfach erklärt?

Der Einheitskreis ist ein Kreis, dessen Radius die Länge hat und dessen Mittelpunkt im Koordinatenursprung liegt.

Für was braucht man Sinus?

Der Sinus, der Cosinus und der Tangens werden angewendet, um Winkel und Seiten rechtwinkliger Dreiecke zu bestimmen. Dieser wird im Dreieck mit einem Punkt im Winkelbogen gekennzeichnet. Gegenüber des rechten Winkels befindet sich die längste Seite des rechtwinkligen Dreiecks. Diese wird als Hypotenuse bezeichnet.

LESEN:   Welcher Tontrager ist der beste?

Für was brauche ich den Sinus?

Du kannst über Seitenverhältnisse und dem Sinus/Cosinus oder Tangens Winkel und Seiten berechnen. Beispiel: Der Sinus ist, salopp, die Gegenkathete „durch“ die Hypothenuse. Angenommen, du kennst die Länge der Hypothenuse und den Winkel zwischen Hypothenuse und Ankathete.

Woher kommt der Begriff Sinus?

Herkunft des Namens Die lateinische Bezeichnung Sinus „Bogen, Krümmung, Busen“ für diesen mathematischen Begriff wählte Gerhard von Cremona 1175 als Übersetzung der arabischen Bezeichnung dschaib oder dschība / جيب /‚Tasche, Kleiderfalte‘, selbst entlehnt von Sanskrit jiva „Bogensehne“ indischer Mathematiker.

Wie groß ist die Bedeutung der Trigonometrie?

Ähnlich groß ist die Bedeutung der Trigonometrie für die Navigation von Flugzeugen und Schiffen und für die sphärische Astronomie, insbesondere für die Berechnung von Stern- und Planetenpositionen. In der Physik dienen Sinus- und Kosinus-Funktion dazu, Schwingungen und Wellen mathematisch zu beschreiben.

Welche Aussagen brauchen wir für die Trigonometrie?

Der Satz von Pythagoras, der Kathetensatz sowie der Höhensatz eignen sich ebenfalls zum Berechnen von fehlenden Größen eines Dreiecks. Wieso brauchen wir dann überhaupt die Trigonometrie? Der Satz des Pythagoras, der Kathetensatz und der Höhensatz treffen lediglich Aussagen über die Längen in einem rechtwinkligen Dreieck.

LESEN:   Was wird beim Sprachtest gemacht?

Was sind die Ausführungen der ebenen Trigonometrie?

Die folgenden Ausführungen beziehen sich im Wesentlichen auf das Gebiet der ebenen Trigonometrie. Die Grundaufgabe der Trigonometrie besteht darin, aus drei Größen eines gegebenen Dreiecks (Seitenlängen, Winkelgrößen, Längen von Dreieckstransversalen usw.) andere Größen dieses Dreiecks zu berechnen.

Was ist ein trigonometrischer Einheitskreis?

Für viele Zwecke ist man jedoch an trigonometrischen Werten größerer Winkel interessiert. Der Einheitskreis, das ist ein Kreis mit Radius 1, erlaubt eine solche Erweiterung der bisherigen Definition. Zum gegebenen Winkel wird der entsprechende Punkt auf dem Einheitskreis bestimmt.